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The plane contact problem of the theory of elasticity of the interaction between a punch, having a base in the form of a paraboloid, 
and a layer, taking Coulomb friction in the contact region into account, is considered. It is assumed that either the lower boundary 
of the layer is fixed or there are no normal displacements and shear stresses on it, and that normal and shear forces are acting 
on the punch. Here, the punch-layer system is in a condition of limit equilibrium, and the punch does not turn during the 
deformation of the layer. The case of quasi-statistics, when the punch moves evenly over the layer surface, can be considered 
similarly in a moving system of coordinates. The problem is investigated by the large-;~ method (see [1-3], etc.), which is further 
developed here, namely, simple recurrence relations are derived for constructing any number of terms of the series expansion 
of the solution of the corresponding integral equation in negative powers of the dimensionless parameter )~ related to the thickness 
of the layer. © 2005 Elsevier Ltd. All rights reserved. 

The aim of the present investigation was to obtain and analyse, by purely analytical methods, the results 
of a study of the effect of geometrical and mechanical parameters (especially Poisson's ratio and the 
thickness of the layer) on the position of the contact area), the shape of the deformed surface of the 
layer outside the contact area and the diagram of the contact stresses, taking into account the friction 
forces in the contact area. Earlier, these relations were investigated by the numerical solution of the 
integral equation for the problem of the interaction of a punch in the form of an elliptical paraboloid 
with an elastic layer [4]. 

Plane contact problems for a layer, taking into account the friction forces in the contact area, have 
been presented and investigated in many publications (see, for example, [2, 5, 6], etc.). 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We will consider an elastic layer 0 <y < h in Cartesian coordinates (x, y) (Fig. 1). Let a punch with a 
base in the form of a parabola with radius of curvature R at the vertex interact with the boundary of a 
layery = h. A normal force P and a shear force T = gP act on the punch, and forces of Coulomb friction 
with a coefficient of friction g act in the contact area. Here, either the lower boundary of the layer 
y = 0 is fixed (Problem 1) or there are no normal displacements and shear stresses on it (Problem 2). 
The case of limit equilibrium is examined, and the punch does not turn during deformation of the layer. 

By means of a Fourier transformation, the contact problems can be reduced, in terms of the unknown 
normal contact stresses beneath the punch q(x) [6], to the following integral equation 
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the kernel of which can be represented in the form of two terms 

1 - 2 v  
k(t) = kl(t)-ek2(t), e = 2(1-v--"'~ g 

kl(t) = ILl~U)cosutdu, kz(t)= S~--~sinutdu 
0 0 

(1.2) 

Here, for Problem 1 

LI(U ) = [21¢,sh2u-4u][A(l)(u) 

Lz(U ) = [2K(ch2u - 1) - 4u2( 1 - 2V)-I]/A(1)(u) (1.3) 

A(l)(u) = 2~ch2u + 4u 2 + 1 + K 2 

and for Problem 2 

Ll(U ) = [ c h 2 u -  1]/A(2)(u), 

A(2)(u) = sh2u + 2u 

L2(u ) = [ s h 2 u -  2(1 - 2v)-l]/A(2)(u) 
(1.4) 

We have introduced the following notation 

G 1 
0 = i--2- ~ ,  8 ( x )  = 8 0 - ~ x  2, 13 = ~ ,  • = 3 - 4 v  (1.5) 

where G is the shear modulus, v is Poisson's ratio, g is the coefficient of friction and 80 is the displacement 
of the punch in the vertical direction. 

We will assume that the contact area -a < x _< b is not known in advance and depends on the magnitude 
of the force P. 

Having replaced the variables 

a + b a - b (1.6) x = rl(t), ~ = rl(X), rl(t) = ---~---t 2 

in Eq. (1.1), we convert this equation to the form 

1 

j" = Ixl_<I (1.7) 
-1 

where 

9 f l  2h tp(t) = q(rl(t) ), f(t) = a--~8(rl(t)) ,  ~, - (1.8) a+b 

2. S O L U T I O N  OF THE I N T E G R A L  E Q U A T I O N  

To solve Eqs (1.7) and (1.8) with kernels (1.2)-(1.4), we will use the large-)~ method. We will first convert 
the kernels (1.2)-(1.4) to the form [2] 

= - Inltl + El(t), k2(t) = ~sgn(t) + kl(t) F2(t) (2.1) 
a;  
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where the functions Fi(t) can be represented in the form of the series 

Fl( t )  = - dit2i' F2(t) = E-Oil2i-I 
i - - 0  i = 1  

(2.2) 

with coefficients 

i -u i ~ 1 - L l ( U ) - e  (-1) i ' I1- d o = du, d i = Ll(U)]u2i-ldu, 
u (2i)!J  L- 

o 0 

i ~" 

bi = (-1) f [ l_L2(u)]u2 i -2du  ' i > 1  
( 2 i -  1)!J 

o 

i > l  

(2.3) 

It was shown in [2] that integral equations (1.7) and (2.1) are equivalent to the integral equation 

' ' 

= ~ f ' ( t )X( t )d t  + E1 f X(t)dt f 
(p(X) n X ( x ) t - -  ~1 t - x  ~'-~ J t - - - ' ~  J ~°(~)F' d~ + 

-I -1 -I 
1 

+ e o f " x ) - ~  cP(~)F'(~-~'~)d~ (2.4) 
-1  

provided that 

1 

P* = _ gl(t)dt = ln~+ D[_I X(- t )  (2.5) 

where 

1 1 

~ -  X--~-t)~cP(~)F d~ 
-1  -1  

(2.6) 

Here, the following notation is used 

F(t) = - F l ( t ) + e F 2 ( t  ), X(x) = (1 + x ) l l2+~(1- -X)  112-~1 

D = - ( ln2  + C + ~1/( 1/2 + 7)/2 + ~(1/2 - y)/2) 

"y = n-larctge, e 1 = l / J1  + e  2, E 0 ---- E / ( 1 - I - e  2) 

where C is Euler's constant and ~(x) is Euler's ~-function. 
We will present the solution of Eq. (2.4) in the form of the expansion 

~(x) = ~ £ - " % ( x )  (2.7) 
n = O  

and substitute it into the left- and right-hand sides of equality (2.4). After some reduction on the right- 
hand side, we equate the expressions on the left and right with like powers of ~,. As a result we obtain 
the following recurrence relations for finding the functions %(x) 

E1 
%(x)  = xUT-') [ P * A t x  - Elf°(x)] + 8°f ' (x)  (2.8) 
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E2 n 1 1 

tOn(X) = ~1 ~ , . i c i  f X ( ' Q d ,  f tOn i ( t ) ( t _ . c ) i - l d t  - 
Ir 'Y[r~ ~ d "C--X J - 
. . . .  k ~ / i =  1 -1 -1 

n 1 

- ~ 2  i c i f  t O n _ i ( t ) ( t - x ) i - l d t  
i= 1 -1 

(2.9) 

where ci are the coefficients of the representation of the function F(t) in the form of a series 

o o  

F(t) = ~ Ci ti, C2i = di, c2i_l = gb i 
i = 0  

(2.10) 

1 

fo(X) = I f'('c)X(Z)d,c 
"C - X 

-1 
(2.11) 

Subsequently, the values of the following integrals will be required [7, 8] 

I 

f'ckX('C)d'c = 2(-1)k(1 - 47)dt l+  e2F(3/2 + %-k;  3; 2) 
-1  

1 k 

f x dx = rt(_l)k /1 +e2F(l /2_y ,_k;  1; 2) 
Q =  x-775 

-1  

1 k ... 

R*(t) = f "c X_(~dx = ~etmx(t) _ ~,/1 + e2tm(2~, + t) + rm(t ) 
"C-t  

-1  

(2.12) 

m - I  

rm(t) = 2 Q*m-k-ltk' m >  1, ro(t ) = 0 
k = 0  

Here, F(~, -k; n; 2) is the hypergeometric function [7]. In the general case it can be represented as 
a hypergeometric series, but, since the second argument here is a negative integer, the series is terminated 
and transformed into a finite sum [7] 

k - 1  
= ~ ( ~ ) i ( - k ) i 2 i  

F(Ix , -k ;n;2)  i~=o i!(n)i , ( a ) i = a ( a + l ) . . . ( a + i - 1 ) ,  ( a ) 0 =  1 

Consequently, Q~ and Q~ are also finite elementary sums. 
Taking into account the fact that 

f ( t )  = a O+alt+a2 t2, fo(t)  = alR*(t  )+ 2a2R* 

where 

a° = a-"~'b~, 0 - 1~ , al = 0 ~ ( a -  b), a 2 = -0l] a +2 b (2.13) 

we obtain 

toO ---- ( ~ 0 0  "1- ~ 0 1 X  4" ~Jo2X2)/X(x) 
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I . 2.a + bq 
~oo = ele*rc +Ol~el 2 y ( a - b ) + ( 1 - 4 y  ) T J  (2.14) 

~ol = O~el(a - b - 2y(a + b)), ~02 = -0~El(a + b) 

We will show that the functionX(x)%(x) can be represented in the form of a polynomial of degree n 

n 

X(x)cp,(x) = ~ [Intx t, n_> 1 (2.15) 
k = 0  

For this, in relations (2.9) we expand the binomial (t - z)i- 1, change the order of summation and 
integration and, after some lengthy reduction, obtain 

c 2 n - 2  n - I  m n - 1  m m 

X@X){I~1%-"t k (--1) ~. r~* _ ~  m! nmj q)n(x) = ~ 2., x ~ ~ ' , , , ~ m - k - I  (2y+x)  ~ (-1)"x 
k=O m=k+l m=O 

(2.16) 

where 

n k 
i!ci , , 

~:nm = ~ i i - m -  1)! Pn- i ' i -m- l '  Pkm = Z ~kpQp+m (2.17) 
i = m + l  p = 0  

In can be seen that the function X(x)%(x) is actually a polynomial of degree n. It can also be seen 
that, on the right-hand side of equality (2.16), the coefficients l~kp occur only when k _< n - 1. 

If expression (2.14) is now substituted into the left-hand side of equality (2.16) instead of %(x), then, 
to determine the coefficients l~nk, after some lengthy reduction we obtain the following recurrence 
relations 

[],,. -- ~(-1)"c,,P*, n > l  

27e1(_1) n-1 81(_1) n-I 
~n,n-1 = ~ (n 1) frn'n-I + rn, - . r e ( n - 2 ) !  . - 2 ,  

2 n - I  
E1 ( -1 )mQm* k - 

= _ _ , r . m  

m = k + l  

n > l  

(2.18) 

2 ) ' e z ( - 1 ) g  r + e l  ( - 1 )  k 
-~ ~. nk -~(k_l)!rn, k-1, O < k < n - 2 ,  n> 2  

Here 

n-I i!ci n-i n!Cn 2 
rnm= Z • m - _ l ) ! Z ~ n - i ,  pap+i -m- l+  (n_ ' - -~-_l ) !Z~opQe+n-m-1 ( 2 . 1 9 )  

i=m+ l ( l -  p = 0  p = 0  

Thus, the solution of Eq. (1.7) is finally represented in the form of (2.7), (2.14) and (2.15), taking 
into account recurrence relations (2.18). 

Note that the recurrence relations (2.18) contain only arithmetic operations, which makes it possible 
to program them easily and, using programs for analytical transformations (of the MAPLE type), to 
obtain in analytical form any finite number of terms in expansions (2.7) and (2.15). This enables us to 
find a solution of the integral equation with any degree of accuracy in the region of convergence of 
series (2.7). 
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Below we will write out the coefficients [~nk only for the case when n = 1 and n = 2, although, in the 
numerical results given below, we will use coefficients 13n~ with different n > 2, depending on the 
magnitude of the parameter )~ and the specified accuracy 

2P* P* 
I~10 ~ ' - -  3 ' g g l b l '  1311 = - - - g £ 1 b l  

P* 2 4 
1320 = ---~-81dl(1 - lET 2) + 0133'(1 -43 '  )81dlI~T(a + b ) -  2 ( a -  b)] (2.20) 

1321 = --~-ela17+013(1-43'2)E1 ( a + b ) - 2 ( a - b )  , 1322 = 2P*dl  
~t 

3. D E R I V A T I O N  OF T H E  P R I N C I P A L  R E L A T I O N S  

Knowing the solution of integral equation (1.7), we can find the contact stresses beneath the base of 
the punch at -a  < x < b from the formula 

( 2x  + a - b'~ 
q(x)  = g~[ a'+"b ) (3.1) 

having first determined the boundaries of the contact area from the conditions for zero contact stresses 
at x = --a and x = b. As a result we obtain the following system of two non-linear equations with the 
two unknowns a and b 

cp(-1) = 0, cp(1) = 0 (3.2) 

System (3.2) is cumbersome even if the solution of the integral equation is found apart from terms 
O(k-3). Therefore, in each specific case, the solution of system (3.2) will be found numerically with high 
accuracy, which does not present any great difficulties by virtue of the representation of the equations 
of the system in the form of polynomials in the required quantities equated to zero. 

Note that, taking equalities (3.2) into account, the function q0(t) can be represented in the form 

cp(t) = X ( - t ) t p , ( t )  (3.3) 

where q0, (t) is a continuous function bounded when [ t [ < 1. 
If the solution of Eq. (1.7) is found apart from terms O(L-2), then the formulae for determining the 

contact area asymptotically for high values of h (h >> max(a, b)) will take the form 

a = a - ~ + O  , b = a + ~ + O  

d =  Pgbi (1  - 2v) -+ l-P(1 2- v) (1 :F 2Y)-1'/2, 1 
4~13G , a = [_ rt13G(l_+2~ J 0 < 7 < 2  

(3.4) 

In the case of Problem 2, the expression for d after evaluating the integral for bl by means of the 
last equation of (2.3) will be simplified and, for any values of v, will take the form 

P g b * ( 1 - v )  1 - 2 v  b 
d = 21t13G , b ~ ' -  2 ( l - - -v )1=0"76857  (3.5) 

Note that in Problem 2 the quantity b~ does not depend on Poisson's ratio v, while in Problem 1 it 
does depend on it. 

In formulae (3.4) and (3.5), the quantity d > 0, and the interval (-a-, a +) is the contact area when 
the punch interacts with the half-space, and here it is always the case that a- > a ÷, with the exception 
of the case of v = 1/2 (7 = 0), when a- = a +. On the basis of formulae (3.4) and (3.5) it is possible to 
draw certain preliminary conclusions concerning the nature of the dependence of the contact area on 
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certain parameters: for example, when the thickness of the layer decreases, a decreases, while b increases. 
Furthermore, when the force P increases, d increases more rapidly than a- and a +. Thus, when the 
thickness of the layer decreases and the force P and Poisson's ratio v increase, the contact area is 
displaced in the positive direction of the x axis, which has a considerable effect on the form of the 
distribution of the contact stresses, on the magnitude of their moment and on the deformation of the 
free surface. This will be discussed in greater detail below. 

For numerical calculations it is necessary to find how the vertical displacement of the punch 50 depends 
on the applied normal force P and the shape of the deformed free surface outside the contact area. 

To find 50, we will use relation (2.5) which, by means of expressions (2.13), we transform into 

80 = (Ink + D) ( a ~ v~,h~-7-77~,~o + (a - b)a I + "--4"-02 - 

We substitute the values of the function ~p(t) in the form (2.7), (2.15) into the expression for qb (formula 
(2.6)). We obtain 

i . Qms , ._!  
m] nm 

n = 0  ra=O 

Snm = n-m(n_i)[Cn_i i n!cp 2 
i~o"~'~_7~-m~T. Z ~ipQn-i-m+p "1" (l~-~m)[ 2 ~opQn-m+p 

= p = O  p=l 

(3.6) 

We will find the moment of the contact stresses. From the formula 

b 

M = Ixq(x)dx 
--a 

after replacement of the variables (1.6) we obtain 

1 2 2 1 

M = (a+b)2 Ittp(t)dt a - b  I 4 -~ tp(t)dt 
-1 -1 

Finally, in accordance with the representation of q~(t) in the form of series (2.14), (2.15), we obtain 

M =  (a _.2r** n 2 i ~ .  ~ 
4 Ln~=l ~ lankk+l+Z~OkQk+l-k=O P (3.7) 

The displacement of the free surface outside the punch is represented by the relation 

w ( x )  = k. a+b ) x<-a ,  x>b 

1 
a+b "c-t 

-1 
Itl > 1 

(3.8) 

Taking relations (2.1) into account we have 

a+b W(t) = ~-~{Wl( t )+ ~W2( t )+  W3(t)} 
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Wl(t ) = 
I 

dt 

f q0(x) In Ix - tldx - P* ln~. 
-1 

W2(t ) = 

1 

~0(x)sgn(z - t)dx, 
-1 

Using equalities (2.7) and (2.15), we obtain 

N k 2 
Wl(t) = E ~ ' - k E  ~kmtm (t) + E ~ O m t m ( t ) - ~  

k=O m=O m=l 

1 m 
tm(t ) = fX--~) ln[z-tldx 

-1 

W3(t ) = 

2Pln~ 
a + b  

1 

-1 

+ O(~-(N+ 1)) 

~ P * ,  if t < - 1  u k .m 
~. , ~..Sm k + O(~-(N + 1)) W2(t) I-P*, if t> 1 Wa(t) = E ~-k E (-1)m . 

k=O m=O 

(3.9) 

(3.10) 

4. NUMERICAL CALCULATIONS 
Calculations were carried out to determine the boundaries of the contact area a and b, the contact 
stresses q(x) (--a <_ x < b), the moment of the contact stresses M, the vertical displacements of the punch 
S0 and the vertical displacements of the surface outside the contact area w(z). 

We will introduce the notation 

q*(x) = q(x)/G, M* = M/G, 8* = 8oG (4.1) 

Table 1 gives the values of a, b ,x , ,  q*(x.), M* and 5" for Problems 1 and 2, wherex = x .  is the point 
of the contact area with the maximum contact stresses for certain values of the parameters P0 = P/G, 
h, v, ~t and R = 1. The initial parameters were specified in the SI system. All results are given apart 
from terms O(~-7), besides the results of the first line of Table 1 (marked with an asterisk) which are 
calculated apart from terms O(~, -11) and given in order to demonstrate the accuracy of the calculations. 

Note that, if the contact area is calculated using the simplest asymptotic formulae (3.4), then, for 
P0 = 1 and h = 3, for Problem 2 we find that a = 0.834 and b = 0.695 if v = 0.1, and a = 0.587 and 
b = 0.597 if v = 0.45. These results are similar to the corresponding results given in Table 1. 

Figure 1 shows a graph of the distribution of the dimensionless contact stresses q*(x) in the contact 
area -a  _<x < b for Problem 2 when h = 1.0, ~t = 0.5, v = 0.1 and v = 0.45. 

The results of calculations given in Table 1 and Fig. I and also the simplest asymptotic formulae (3.4) 
enable us to draw a number of fundamentally important conclusions: when the thickness of the layer 

q* 

0.8 ~=0.~ 

O A [ ~  / 

0 
-0.8 

! y ~ 

-0.4 

~ = 0.4~ 

0 0.4 x 
Fig. 1 
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Table 1 

v a .  103 b.  103 x,.  103 q*. 103 M*-103 [ 5*. 103 

0.1 
0.1 
0.3 
0.45 
0.1 
0.3 
0.45 

0.1 
0.3 
0.45 
0.1 
0.3 
0.45 
0.1 
0.3 
0.45 
0.I 
0.3 
0.45 

0.1 
0.3 
0.45 
0.1 
0.3 
0.45 

775* 
768 
638 
513 
820 
687 
567 

764 
632 
517 
816 
683 
567 
834 
699 
582 
597 
501 
418 

826 
646 
489 
912 
734 
580 

Problem 1, g = 0.5 
578* -186" 
574 -188 
552 -89.7 
540 9.16 
653 -182 
607 ] -9.55 i 

575 ; -9.34 
Pr0blem2, g = 0.5 

599 -169 
591 -64.8 
584 27.3 
663 -176 
623 -86.0 
592 -2.03 
672 -184 
625 -96.1 ! 
590 -1.25 1 
475 -135 
441 -72.7 
415 -13.3 

Problem2, g = 0.9 
544 -291 i 
577 -113 
609 -49.2 
625 -327 
602 -172 
594 -22.5 

956* 
962 

1077 
1214 
873 
988 

1116 

947 
1046 
1159 
869 
976 

1099 
852 
964 

1086 
597 
677 
764 

955 
1050 
1160 
846 
961 

1086 

-130" 
-129 

-60.3 
10.5 

-117 
-59.2 

-.579 

-114 
-36.4 

30.2 
-110 

-48.9 
7.66 

-116 
-57.0 
-16.9 
-42.9 
-22.2 

-2.68 

-196 
-63.1 

54.4 
-206 
- 102 

-3.01 

362* 
364 
278 
191 
527 
406 
290 

369 
307 
259 
537 
441 
366 
647 
528 
434 
372 
302 
247 

366 
304 
260 
657 
530 
434 

h is reduced, either when the force P increases or when Poisson's ratio increases, the contact area is 
displaced in the positive direction of the x axis; when Poisson's ratio changes in the range 0-0.5, the 
moment of the contact stresses may change sign, and here the sign of the quantityx., defining the point 
of the contact areax = x, where the contact stresses are a maximum, may also change. Depending on 
the magnitudes of a and b, the nature of the deformation of the free surface in the vicinity of the punch 
also changes: if a > b (the quantity v is small), then, in the vicinity of the point x = b, the deformation 
is greater than in the vicinity of the pointx = -a; ifa < b (the quantity v is close to 0.5), then the opposite 
is the case. A value of Poisson's ratio v will always be found where the pattern of the distribution of 
the contact stresses and the deformation of the free surface will be almost symmetrical, while the moment 
of the contact stresses will be zero. Furthermore, the displacement of the punch 80 is practically 
independent of the coefficient of friction g. 
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